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ABSTRACT

The generation of long-wavelength, viscous-inviscid interactive C6rtler vortices is studied in

the linear regime by numerically solving the time-dependent governing equations. It is found

that time dlependent surface deformations, which assume a fixed nonzero shape at large times.

generate steady C6rtler vortices that amplify in the downstream direction. Thus, the G(rtler

instability in this regime is shown to be convective in nature, contrary to the earlier findings

of Rll)an and Savenkov. The disturbance pattern created by steady and streamwise-elongated

surface obstacles on a concave surface is examined in detail, an(d also contrasted with the flow

pattern due to roughness elements with aspect ratio of order unity on flat surfaces. Finally, the

applicability of the Briggs-Bers criterion to unstable physical systems of this type is questioned

by providing a counterexample in the form of the inviscid limit of interactive GCrtler vortices.
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1 Introduction

"The physical realizability of an unstable equilibrium solution corresp)onding to a nearly homo-
geneous shear flow is dependent on whether or not the equilibriunl state corresponds to the
tinme-asymptotic solution of the related unsteady problem. The answer to this latter question

can usually be obtained quite easily, provided one has sufficient information to classify the Ili,-
ear instal)ilities of this equilibrium state as being of either al)solute or convective nature (Briggs
1964, Bers 1975, Huerre and Monkewitz, 1985). The presence of an al)solute instability means
that any compl)act unsteady source with a, continuous Fourier spectrum will introduce distur-
b)ances that amplify indefinitely in time at all neighbouring locations, thereby eliminating the

possibility of any time-asymptotic state within the linear framework. In contrast, the response of
a convectively unstable flow to a pulsed source takes the form of an instability-wave packet that
is swept away from the source by the mean flow, thus restoring the original state at sufficiently

large times.
For convectively unstable flows, it is also possible to investigate the response of the flow to

some continuous forcing in a local region, say in the form of a time-harmonic disturl)ance which
is switched on at a finite time. The time-asymptotic solution to a "signalling" p)roblem of this
type can be obtained either from a superposition of the wave-packet solutions Balsa (1988), or

IwV directly solving the steady state equations which have the harmonic time dependence built
into them. The overall amount of effort required is perhaps larger in the former case; however,

it automatically ensures the causality of the steady-state response, without any need (as in the
latter case) for extraneous considerations such as the Briggs-Bers criterion in order to specify
the correct streamwise boundary conditions at the upstream and/or downstream ends.

The objective in this paper is to consider the above issues in the context of a centrifugal., i.e..
the GCrtler instability of boundary-layer flows over concave surfaces. Experiments have shown
that this instability is usually manifested in the form of steady streamwise vortices which amplify
in the downstream direction, eventually yielding to time-dependent instabilities of a secondary
and tertiary nature. The various experimentally observed features of the linear and nonlinear
development of the G5rtler vortices have also been explained using asymptotic theories (flall
1982a-b., Hall and Lakin 1988, Hall 1990), and direct numerical simulations (Hall 1988, Sabrv
and Liu 1990, Liu and Sabry 1991).

While the occurence of steady unstable vortices is suggestive of a convective nature for the
G6rtler instability, the validity of this assumption had not been addressed until Parks and Huerre
(1988), who examined the special case of an asymp)totic suction profile. More recently, Riuban
(1990) (herafter referred to as R) examined the G6rtler instability of an arbitrary profile in the
long-wavelength regime using asymptotic methods in the limit of a large Reynolds number R, and
a large G(5rtler number G. Somewhat surprisingly, he found that the flow is absolutely unstable
to spanwise-periodic perturbations. However, lie also examined the disturbances created by an
isolated point source and concluded that the flow is convectively unstable in this latter case.
Hlere, the wave packet, determined through steepest-descent analysis, was found to spread in all
(directions including utpstreanm, except for a sector of 60' directly ahead of the source.

Savenkov (1990) (henceforth, S) applied the same asymptotic framework as Ruuban to si u1(' v
the rec'eptivity probleni for the GCrtler vortices in the long-wavelength regime. lIe used a residue
analysis in conjunction with Fourier transform methods to compute the approximate temporal
development of tile perturbations created by an unsteady wall humpl1 which assumes its final



(nonzero) shape after a l inilie lenigthI of On te. HIis results were supportive of thle coniclusionls
in R. iii t Iiat the 51 eaulv-st ate lpattern1 was founid to be simiflar iii shape to thle t intie-dependeiit

wave packet of R. anid 110 ( t6tt let volt ices were generated (lownstfream) of thle hum ip. Previously.

Rozhi ko t / a ( 1988) ( lvietcefort hi. R WI ) had also studi~iedl the same problem. albei Inidng t he
steady state equtat ions direct ly in Foturier t ransforin space. Thie (list irbatice p~attern conipu)ltedl

in t his mianntir was also sinfiiilar to that oxt aiiieA 1, S as a limnit, of t he thi ne-depeiident p~rob~lem.
M IT had also found t hat a crucial OIifleretice between the (list urlbance p~atternis onl coincave andl
convex walls corresponds to thle presence of aii 0( 1) up~stream signature in the former case, as

against a total lack of aiiv "jst reamn itiIIuience in the latter case.
'I1l( albove resti Is concerning thle absoliite natuire of thle (43rtler inist abili tv, as well as thle

OCC ittiiV ( of an itipst rea ii initerac'tiotn iii t ie, concave-wall case, are rat her inotrigu ing, thle former,
sinice it casts a doub t onl t he relevance of flinich of the prevfios work onl Ca'rt ler inst abi lity whxiichi

was related th) sthadyv vortics, and t he latter. due to thle fact, that. the steady-st ate equtations

an rnlyparaloli in Iau In tis paper w xn linete probleiis addtessed Iw H, S and
RHTH, antd deiiotstrate tGat. the peculiar fi di iis of t hese intvest igat ors are actually a resn t of
ha vintg ignored a futidanient al property of the partial differential equlatiotns governiinig thle steady
anid inisteady probletus. Specifically, we show that solving the uiist eady problem withI the

appropriate boundi~aty cond(it ions tiot onil v cotifirms the convective natuite of Ca6rtlet' intstabi lity

in] thle spatiwise-periodlic case. but also yieldS the solutitoti to the recep)tivity jprolleill inl the limnit
of large tOnes.

Th e PrObl en of tle getietat ion aniid siibseq entit linear dlevelop~men t of bung- wavelength C;6rt her
vortices is form til at ed inl thle followintg sect ion . 10thlotigh iio extra effort is involved in solvinig

the ('ouxplee proble MeaIMe to \'15con1i5nviscid inuteractivye vortices, it is imore ill ust ativxe to

sep~arate(lv cotisioler thle two Ii mit ing cases coriespoffuid ig to the viscous and iiiviscid vortices.
respect ively. BothI antaly t icalI an( m ~id ii eri cal methlods are uisedl towardls t his purpose; thle anal *yt -

mi'a work is presentited int Sect ion 2. whiii st iii Section :3 we present, our- results. Final ly we draw

soilie( Conclutsionis in Sect ion 1.

2 The governing equations for viscous- inviscid interac-
tive longitudinal vortex structures and some analyti-
cal results

,\1 a gi veti valItue of thle (citrva tuire paramieter. vi z. the CArt~c lenmiiinblr 6' (7 .2 t, the linear'

deveh pnieiit of st eady (3rt ler vortices is detertflinedl prinman ly by thle nondininensional wave-
letigth Iin thle spantwise di rec'tion . A,= jfl~1 . IHere V (deinotes a typ~ical streainwise lenigthi
scwale Ibasedl on thle (listanice liet weei thle Weadintg edge and the ocat~ioti of inerest , a* > > 0(Q)
is thle tad iuis of ('litvat ire of the surface at t iis location, atid I? L- ( >> I ) is thle Revnolds nmb11er
1 ased (iot t lie( local free-st reanii sp~eed Q( aind the dlistaifce L. The asterisk is used to intiriate(

lhe dinlietisiotial Jutantit it s here. and thlroughiout thle rest, of t his p~aper.

It wasý shown itndepetndent ly by D)enier. Hlall and Seddoulgiti (1990). atid Iitioshiiti (1990)

that in thle litiuit of large (:5r~tler tiutiibets ((7 >> 1 ) one iined'(s to consider five different asynp-
tot ic regini( s a long thle Aý axis. Ilii t ie ordetr of intcreasintg spanxvise waveletigthi. thlese regintles

c(nrr("po(nd~ to ( i) t lie tieutitral ri'ginie (Az (~/) (ii) the miost, unstable tegimle (AZ



(Iii) the i iiviscidl regime (A-2  0( 1)), (iv) thle long wavelength or viscoiis-inlvisci(1 Intieractivxe

regime (Az c;117 ). and finally, ( v) the nonparallel regimie corresp~ondling to A-2  0((; 1 /~2).

Invest~igations of the linear and nonlinear stability prob~lems associated withI thle first, thlree of
these five regimies have been given by f lail I(I982a-b), H]all andI La kini (1988), Denier, IHallI and~
Sedldotigui (1990), and Timoshin (1990). The viscous-inviscidl regime for G'6rtler vorticeIs was
first investigat~e( by Rozliko and Rtiban (1987) in connection with the (listutrba n ces geiieratre(l
by streaiiwise-elotigated roughness elemients over curvedl suirfaces, andl suibsequently, In the saiiwe
context by ' v RT. R and S, as mentioned already. The fifthi regimie corresponii~ing t~o non parallel
Vortices dloes not appear to have been studliedl in any dletail un1til njow, butjj see Hall( 198:3).

As stated in the uIntrodluction , onr concern in this paper' is withi the generati1on and linear
amiplification of the long wavelength, or viscous-inviscidl Interactive (W6rtler vortices, which are
relevant at locations close to the leadling edlge. As first shown by RR, the asymipt ot ic scalings
of thIiis regimiie are( fixedl by thle condoit ion of visconls-in1viscid interact ion, pl us a balanice of thle

(liplaemnt- nuce pressuire with the jium p iin pressure across the main p~art. of the boundary
layer due to centrifuigal efrect~s associated with the surface curvatuire. These b~alances ident ify
t he spanwise lengt li scale A., based on the boundary-layer t hickness, as lheing of 0((- 1). where

( =(7- 1/7 ( << 1), whereas the st reamwise length Scale ("- b~asedl on the (list ance L* from thle
leadlinfg edlge, is (determininedl to be 0((0). In te lie ormial dlirect ion, thle vortex sI tructutre consists
of thre e (list inct suibregionis, viz, the lower, middille a~nd uipper decks, whose thIiicknesses relative
t~o t hat of H ie boundary layer are of 0((~), 0( 1), and 0((-' ) respect ivelv. Thie overall (IvuamiCs
of each of thle decks, as well as theicir cotillinrg, is quiiite analogous to t hat Iii the coiiveiit iotial
thIiree-dhimiensional triple deck p~roblemil. Thie stnrictutral similarities betwxeen thle two probleius
leadl one to ant ici pate that the ( 6rt ler vortex problem is also anmenab~le to thle sa me sohnit ion
procedure as t hat. aplpliedl in trip1 le-deck- prob~lems, aiid indeed. t his was shown to be thle case b)y
H M. Speci fical ly, it is possiblle to obt aini closed1 formn soluttions for the p~ertuiirbat ions iii thle middl((1e
aii(1 tipper dh'cks. and a mat chiing of thiese twX\o provides thle initieract iv\e rela Iioiishi P betwxeen thle
pressurre anid (hlisplacenienit.-tIi icknie(ss pertutrb~at ion. t iiis closes the lower-deck p~rob~lem governed
bY~ some form of thle t hree-dlimeiisioiial botinda rv layer equationis.

F~or thle sake of (definiiiteness, consider the samne prob~leim as t hat st idied b\ bvoth liR anid S.
i..t lhe dlist iirbarice jpatrt erri p)rodutced by an tnnst eadl wall-lmiiinp wit li an a rbi t rarv bu t specified

shiape t hat cani be ex pressed as thle coorolinat~e sturface

V =0, (2.1)

corresp~oiidinig to thie Pr aiot l-t ranislosedl coordiiiat e withlin nthle lower dleck, ' i /?(,_~.'2A4/7.I/ i--

I" ( X, Z, 7'), whIie re X 3A /7 .r* 17 anid Z' H( 112 1i/7Z/ 17 are locak coordinaiats inthle

st reamwise andl span wise di rections respecti1vely. 7 - (ICAX7, /1 is thle iinolirilieii-
sion1al t imte, and~ h ( << 1 ) anid12 ,2' ' are. respect ivel v, thle inormialized llheighlt parameter
anrd shape function chiaract erizinig thle wall- hmnp geometr rv (see Fin,. 1 ). F'or reasons wxhiichi will
lbe obuviotis later. it is appropriate to only consider thle tyvpe of [imnp geonmet ries which have a
delfiniite st reaiiwise origin, i.e., F( N. Z, 7T) =0 for X less t han ,ome finite value A'(). which will
be asstniied to be tlie( origini, XN 0. wvit hotit any loss of g iierahity. The parameter A is used
to d ennot e thle wall shear correspondinig to the intcom inig bomiidarv- layer profile jutst ti1 st reami of
lie rni ighi ess elemniit.

:1/



YFx + V), 6-3RcLj/1hA2/7r,, (-Rc- hA 4/ 7p) for the lower deck variables, one finds that
the leading-order perturbations (U, V, 1,l P) are governed by the linearized, three-dimensional
boundary-layer equations

iOxU + ay V + OzVW = 0, (2.2a)

(OT + Y Ox)U + V = OY,(, (2.2b)

and

(OT + Y ax)W = -zP + Oa2W, (2.2c)

without any pressure gradient along the streamwise direction. Since the surface deformation
(file to the unsteady hump has been assumed to originate at a finite time, the disturbance field
may be taken to be zero at the initial instant of time. Similarly, it can be assumed that the
surface obstacle will not produce any disturbances sufficiently far upstream, and also that the
disturbance motion either decays, or remains bounded, as IZI --- oc, depending oil whether
F(X, Z, T) has a compact or noncompact support in the spanwise direction. The boundary
conditions in the normal direction are given by

Ur= V= W=0 at Y=0, (2.3a-c)

andl
I ' F(X, Z, T) - A(X, Z, T), W -- 0 as Y -- oc, (2.3d, e)

where the displacement-thickness perturbation A(X, Z, T) is related to the pressure perturbation
P(,N, Z, T) via the interactive relationship (RR)

I [+x O•A(X,2 )
dzP = -sign(G)azA + - "A d, (2.3f)

7TJ 0 -z

which reflects the simultaneous balance between the lower-deck pressure, the curvature-induced
pressure within the middle deck and the displacement-induced pressure inside the tipper deck.
In (2.3f). the sign of the (G6rtler number has been assumed to be positive for concave surfaces,
and negative for convex ones. Moreover, one may also obtain results for the case of an underlying
surface that is flat, or has an asymptotically small curvature, by setting Sign(G) = 0 in (2.3f).
In that case, the small parameter ( is to be interpreted as a measure of the aspect ratio of the
planform of the surface obstacle.

It is worth mentioning that apart from the absence of a streamwise pressure gradient term in
equations (2.2a-c). which follows as a consequence of the length-scale disparity in the streamwise
and spanwise directions, the problem of viscous-inviscid interactive vortices differs from the
three-dimensional triple-deck problem in two other aspects which are related to properties of the
middle and upper decks, and thus, are manifested through the interactive relationship (2.3f).
Firstly, the role of the main deck is no longer just a passive one, corresponding to a direct
transmission of the outer pressure to the lower deck, since the centrifugal effects in the middle
deck now substantially alter the pressure gradient imposed onl the lower deck. As seen from
equation (2.3f), the pressure jump across the middle deck turns out to be independent of the
details of the incoming boundary-layer profile. being equal to just the normalized displacement-
thickness A in terms of its magnitude. For this reason, the equation set (2.2-2.3) is a canonical
one and, indeed, after some additional analysis, it can be shown to be valid at both subsonic and

n-



supersonic speeds. The other source of differences between the G6rtler-vortex and triple-deck
problems is related to the behaviour in the upper deck where, due to tile negligible pressure
gradient in the streamwise direction, the secondary flow in the cross-flow plane is decoupled
from the local streamwise motion, in a manner somewhat analogous to slender body theory. As
a result, the upper deck motion is elliptic only within the cross-flow (Y - Z) plane and, thus,
cannot exert an 0(1) upstream influence on the lower deck motion via the pressure-displacement
relation (2.3f).

Applying a Fourier transform in the spanwise direction (Z -* k), and denoting the trans-
formed variables using an overbar, the governing equations can be rewritten as

OxxU + oyV + ikW = 0, (2.4a)

(aT + Y ax)UI + 2YU = ,, (2.41b)

and
(aT + V x) VV = -i kP + iW, (2.4c)

along with the boundary conditions

IT = V = IV = 0 at Y =0, (2.5a - c)

U = F(X, Z, T) - A(X, Z, T), V = 0 as Y - oc, (2.5d, c)

and

kP = -sign(G)kA + sign(k) Axx, (2.5f)

obtained from (2.3a-f), plus the homogeneous initial conditions in X and T.
In the following section, we present numerical solutions to the unsteady problem posed above

for the case of spanwise-periodic perturbations, and confirm the lack of aniy absolute instability
by demonstrating the appearance of an unstable, spatially-growing C6rtler vortex at large times.
It is also possible to obtain closed-form, analytical solutions by taking the appropriate transform
along the streamwise direction. For instance, RRT, R and S used a two-sided Fourier transform
in their work; but, one should note that using a Fourier transformation along the streamwise
direction in unstable physical systems is not always a straightforward matter, although fairly
standardized recipes, such as the Briggs-Bers criterion (see Briggs 1964, Bers 1975), are now
available to treat this issue in the case of streamwise elliptic systems. Now, due to a lack of the
streamwise pressure gradient as well as streamwise diffusion terms, the system (2.2-2.3) is not
elliptic in A and Y. In fact, in the limit of very long wavelength vortices, it can be easily shown
to be parabolic in the streamwise direction; refer to the discussion following Eq. (2.12d). Noting
the failure of RRT, R, and S in accounting for this anticipated lack of upstream influence in
the concave-wall case, it would seem that a straightforward application of the Fourier transform
technique in non-elliptic unstable systems may lead to physically unacceptable results: In Section
3.1 below, we will also consider the short-wavelength (or inviscid) limit of the problem, and
illustrate the inapplicability of Briggs-Bers criterion towards predicting the nature of instability
in that, case.

Thus, consider the Laplace transform solution to the problem posed by equations(2.4-2.5).
which is given by

A(3, , Air) (2.6a+.')i'( 0) k ( - 3) (r,)3"A`ýI +] [sfr(G 0A d



AT [3'sign(k) - ksign(G)JA, (2.6b)

+ k2 P1(( -~iCd ____ ], 2.c

j3_13 __V___AI (;(Co)

12/ [,ic 4-7 P Gi(O) A'i(()], (2.6d)

and Vfollows from thle X-mom11enitum equtation, (2.41)). Here oa and 13 denote the transform
variables correspondling to the time T, and the st reamwise coordinate X respectively, while ( is
defined as

C 1 /3'' + Co o 1/'(2.6c, f)

The disqpersion relationship correspondling to the (W~rtler vortex instability modes is then givenl

1)(( , 3:) 4Co + siqr?(G)k 2 _ 1k ,132 =0, (2.7a)
f(4~() d(

(L) (0l) Y(U)

wvhich fuirt her reduces to

1 i(O3 3 + .sign(G)k2 -k) .(.b

for the case of sedvotices (ar = 0). which are apparently more important ini practice than
lhe mnsteady ones. An interesting prop~erty of the steady dispersion relation (2.7b) is that it.

possesses a iinique root in the complex 31 plane for any given (real) spanlwise wavenumlber k, and
m~oreover, this root, always lies on the real, positive ii axis, implying that the steady vortices
exhibit a purely exponiential growth in the streamwise direction. A plot of the stationary growth
rate 31 as a fuiniction of the spanwise waventimlber A, is shown by the solid curve in Fig. 2, where
thle large and small k, asymptotes, given by (2.8b) and (2.9b) below, are also indicated by the
two dlashedl curves.

As described earlier, b)oth the unsteady as well as steady dispersion relations represent a
balance beiween1 the effeCt~s of viscosity in the lower deck (L), destabilizing centrifugal forces
in the middle dleck ( M), andl the viscous-inviscid interaction via the uipper deck (U). However,
in lie limitt of large spanwise wa-venumbers (k >> 1), and commensurably larger frequencies

>IT >> I), the (dominant, balance shifts to just the inviscid termis (M- U) in (2.7a,b) together
withI the large aT form of ( L). and is given by

-(73 + ~qnGk - ikhY2  0, (2.8a)

in the uinst eady case. For thle steady problem ( L) is negl igible and we obtainl

-?fi( ), Jkl132 = 0. (2.8b)



which matchesw ith the dispersion relation in the main inviscid regime corresponding to si a-
ionar vortices with spanwise wavelengths comparable to the l)oundarv-layer thickness: see

Denier. Hall and Seddougni (1990), and also Timosh in (1990). In coid rast, the Opposite I mi it

of extra-long spanwise wavelengths ( k << 1), which was the focus of the work by IiRT, R and
5, leads to the purely noninteract ive, viscouis-ceiutrmfuigal ( L-M ) balances

115/3Ai'( (o)

f� Ai(() d( + go 0, (2.9a)

an (1
3Ai'(0)s3513 + .sign(G)k2 

= 0, (2.9b)

iii the uinstead�' and steady cases, resl)ectively.
Finally, setting .sign(C) 0 in (2.Ta) yields the interactive, Bat-surface limit.

!35/3Ai'(4o) kU2 =0, (2.10)

f�' Ai(() d(

which corresponds to very oblique Tollmien-Schlicliting waves (Hall and Morris 1991), and could
also have been obtained by taking the al)l)ropriate limit of the full three-dimensional triple (heck
e(juiat ions. Since our l)rima.ry interest lies in the C6rtler vortex type of instal)ilities, the limits
2.8) and (2.9) are more relevant to us than (2.10), and therefore, we shall choose to concentrate

on t liese two cases iii the remaining part of this �)a.per. Of particular interest will be the extra-
long wavelength l)rol)leiu which is exeml)lified by the (lisl)ersion relationships (2.9ab) and, was
also consi(lere(l by R HT. II, and S. For this case, it is possible to fuirt her suibstant iate the lack
of any ii pst ream i nfl uuen ce in a ni an iier (lescri l)e(l l)elow.

l3asica.l lv, fuirt her man ipulat ion of equations (2.4) leads to a single partial (Ii fferent ia 1 eqiiat ion
for t he vertical velocity perturbation,

V4 - (OT + YOA')V4V 0. (2.11)

which, together with the boundary conditions

Oat V 0, (2.12a - b)

0, (2.12c)

a
� V(0) ± .siqn(fl') k2 [a� V(�) ± i)y ['( N, Z. 7')] 0., (2.12d)

a � I lie homogeneous initial conditions in N an(l T (Ii rect iouis, can be viewed as a one parameter
?'iZ. Y ) fain i lv of Ii near advect ion equations in the A' - T space xvi t h a positive semi-deh nit e

ra tige of coii vect ion velocities, t lie member equations I)Ci ng coui T)le(l via, normal (lifTusion . and the
integral evoliit ionarv coiist rai nt (2. 12d). ihe nature of these a(lvect ion equations lends furl her
511 pport to 01 ir j)r'xiouis argui inent concerning I lie lack of any u 1)stream intl uieiice in the prol)lem
Si uice I lie propaga t iou of (list ulrl)ailces in the i 11 )st ream (Ii rect ion is �olii hit ed . I lie homogeneous
initial coti(l it ion in the st reaniwise (Ii red ion caii be i in posed j list ii l)st ream of I he origi ii of t lie
si irface non iii form it v. i.e. at N -* 0-. One shoui 1(1 also note t li at. t lie a hove classification of



Iit(. g-ovýeri i ng part ia I different ial equiiat ions is ili (lependeit, of the( signl, or thle miagilitrilde, oftIhe

cuirvatuire parameter G. sincwe it onl lvy appears thlrouigh t he coefficient of a zerot h-order derivative
terminii (2. 1 2dl). The onily differeniCe l)eWt(1 weiC teCOnveX and concave cases corresp~ondls to the
e'xist ence of ai~t ('3-ler intst abi lity InI the latter case' wh~ich leads5 to dist iribanice ampIlificat ion in]
lie dlownistream dlirec'tion. Thiis asp~ect appears to have been overlooked by R RT, R anid S. who

1ii1i1ized it atw~o-sidled Fourier t rarisforinl III tlie st reainxvise dlirect ion withLout accoinit ing for the
propt'rt ies, of ft(li gov eirning differential eqilat ioiis.

3 Numerical Results

IItii1llis sect ion We preseiit the nuimerical soluiitions to the set of oovern inig eqiiat ions correspond(inig
to (2.2) and (2.3). Thel( tase of 5fpanixise p)eriodic perturbations is exaiminedl first In Sect ion :3.1.
fbi lowe bYI tvhle caise, of anl Isolated surface excrescence, which is dliscussedl iii Sect ion 3.2. 1In both
cast's. sp~ect ral discret izat ions. Chlehvshiev and Fourier, respecti vely. wverent ilized along the V andl
Z tlirect ionls, whereas ascoit Scl-ordler accurate backward dlifference scheme was used to compute
lie vori ex evoluntion inI space (,V) and time ('). Si nce both fint( lU and VV p)ert urbat ions approach
their iiniiigva I ies at i iitv( correspondling to equationis 2.5d ,e) rat her slowly the uisage of

Ii iglier w-drt ho ili darv conditions obt ainted thIirough asvliupt otic Considlerat ions was found to be
iii pt'rat ivt' InI mainttainiiing t he spf-ct ral accuracy ]in thle V-direction. Overall, this numerical

schelen( coin 10 tes at robli st march ing p~rocedure~ with a strong coupliiig inI the secondary-flow
pl ale the lt' teir beinig. especial ly desirable for sol vinig vortex-flow p~rob~lems. T1he accuracy of
tlit'iifii erica I resutiits was yerified bv grid- resol lit loll checks, as well as t Irough coinparisons with
ainalvt ical 51)1111 bus ., as discuissedl below.

3.1 Unsteady Evolution of Spanwise Periodic Perturbations

We will first I isclitss flit resutilIs pert ainiiing tot the limrnit of t lie ext ra- long wavelength viscolus
vort itts. Wte recall thIiat t his caise, hias been considered by H . As pointed ouit, in that paper.
an rid s tan h e seen di rectly from ft he dispersion relat ion ( 2.9a ), this regimeU( admits a si mi larityV
1behiav iou r of th lt'ype X - Z';I- and(. T' , Z1, and hence, it is suifficient to consider the

lifistit , vlit~iil of it ist a sinigle lFouirier mode ]in t he spanwise dIirect ion; this we take to be
A, I withI ou t al ii v loss fii ge'neral ityv. 'Fit' real amid imiagi nary parts of the spatial (3) root, of

hlits lnirsteadv dispersioni relat ioti are shown inI Fig. :3 for real values of the frequency w(= iT).

'n~ k' lt'cas o ct~s- lowvot ies wit'e li mstunstable' modes are ustially time dIependlent,
1it're t lIt'( st eatY lv(-)rtlo'r vortex ('0) is fonind to have fthe largest growth rate for- any givenl

npalmwist' wavt'n i mb1 er. Tlm s. alonig w%"it lithle fact t hat a cls of poeta lvdmnn.rcltyivt
inehtlaiisin s prt'fert'ir t ia 11 exciw t'h le sIt'adly vort ices ats compared to unisteady oiies ( ('houdlari
atnd St rt't't I. 199)¶). wvoul heI Iltp explain tht' ob~served dorin iance of st eadyv (5rt en v'ort ices Iin
laborato trv t'xpe'niiieit'mts.

AS slitM1 twtIII Fig. 3. thlit spatial growthI rate decre'ases muonot on ical ly wxithil freq r en cv. A
lieit'niral point exists atc= 2.298 whilst iii adldit ion thter(, is fthe asymptote H( (3) - _L , 3 12 as

(1 itI 2 ( Z_ -3.21,82) Iut'iig thlit s'conut Zero of *li'((O) onl fthe uwit'gtive re'al ((o axis. Onf

lt'c tdhr hianit, th lit'iiagirnarv part o~f .1 is zero at w 0. Implying a piurely' expoinent ial groxx't h
1).\ th li'satit tina rv vortex, as merit itonedt prt'viou slY hu t I u( 3) inci(rease., nearly nmoiot on icall v s
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is increased, leadling to anl asymnpt ot ic behaviour of I 111(3) -~ 724 at large freqelencies. Onec
ila,%- also observe that . since tlie( growthI rate ci i ive is local ly st at ionar ,V ne~ar its na xi uInIII at

0, the derivative c,, =. , L correspoitdIiitg to I lie grou ip veloci lv of thle stat iou arv vort ices
Ill lie st reanliwise dlirect ion, is purely real and( positive, equal to ab~out I. *; s seen from tlie(
dash-dot curve Iin Fig. :3. Of course, thle behlavliour of' ("(rtler vo't ices is farl fronm thai of t he
miai iilv-oscilIlat orv intstabi litY mlodes of tlie( Toill inien- Sch lichiti hg or R ayleigh t vpe. aitld hence.
the inot ion of gr'oup lVelocity is iiot ex pected to be p tvsic(al ly relevanut ill thliis case. espec'iaIlly for
lIhe ' 0( 1) modes where tite real and~ nixagi nary *IVar'ts of cgA are coimparable to each ot her.

Nevertbleless. it, is inute(rest iig to note t hat, the real part of t he grouip velocitY Il iii 1 h X-(li red iOil

is alasposit ive. and less thalau its val tie for st atioinary vort ices. Fuirt hlerunlore. t he t inagi iia i'
part of tlie( grouip velocity is bounided for all] Spatial mnodes. Thierefore. oiie might expect alt
Inmpulsivye source to geinerat e at wavepacket with Itboth end'i~s prop~agat inig at. hitnit e speedIs. TIhis
was indeed found to be t he case Ilili tiii nimeric'al sol ut ioiis which are presented below.

For thle piirpose of slimiulati tiigthe t ranisient wavelpaclket prob~lem, we considered ita lii ini pshape
oh I lie form

F(N. Z, T') =(I - co.s(27;-X)) (I - co.,4( 12V1)) cos(27r7) R(X.V.0. 1 )R(T. 00.5). (3. ()

where [?( q.q,.q ) (deniot es thli restric'tion operator Iin tithe q space, beinig c('(iial to in it y for (1, <
q/ < (1f, and( zero~ elsewhere. Siminilarlv. ]in order to obt ain tittli st ea(Iv luiiiin sol ut ion iii a ca usalI
mtannter. aii utniste(adyv hum p shape of tiln, forml

F(X\' Z. T) - I - c'O.127WA)) (I - )co.';(27rZ) U?(X.0, I). (:3. 1b)

Wa:ý al so c'onsidheired
For bot Ii thIese geomnet ries. we have shown the behtavioutr of thle displa~ceineitt fuinuct ~io

:1( A'.Z. ') alonig tlie( vortex ho i idar i' v 0 ais a funitct ion of A' at select ed i ist aiit of t11ime III
l"igs. la and lb respect ivelv. l'mgniim (I a) shows that hei trianisienit sumrface dleforinat ion generates
at vortex patcli dowinst ream which Incirieases ]in its striea inwise exteiit, and in antpl itude. wvithI anl
II IC ri'a SCIii timne. Onue Ila' n Iote that bet weeii 0 < AX < 1. the( d isplaceminet fuili ctionl con forms
(juiite ('losely to t lehum-pe du11ii'ig thle period 0 < 7' < I Whent It is nioiizei'o. Sigutificaiit lv

lie( vortex pat tein dlisplays ito oscillatioins ]in thle sti'eamwise dlirect ion at all. Thuis, Ilie bounld-
a rv layer ex perieiices a p)osi tivye displacemenit at all tIimes alonig tlie( voi'tC ex1011 ida rv 7 0.
andI itnegativye d isplacemeneit along the( cent rel itie 7,-. As at result of tithe anipli ficat lolt with

lihe passage of tmitile, one woii 1( obsei've a; i tincreasing ugly st toutger st reaky st ruc(turime cort'espondintg
to an. a]lternat e pat tern of bouindIary' layer uiplifteneit (I.e. dccelerat ionl) ando ait equally'N struonig
att ac'hmeint (iLe. ac'celer'at ion) withI a constanit spacing alotig tlie( stireairuwise dIire('tion . It wvill.
oif comi '5(. be very Initterest.intg to see how tinoii iieari t v modifies thiiis beltaviomi r. anid th1tis NviIIl be
lie( top ic( of at fort licomntiig pa per. F inali lv 1 nit miost in pot'tant lv. thle 'ontvec'tivye itattire of the

spantw ise per'iod ic pertuit'bat ioii is seen \,'erv* clear1 v froi tit( lido(winstream mniov'eimeitt of tlie( tail
of the vortex patcli: see. especially, lie( curives mnar'ked 12 t liioughi 15.

[Figutre lb) sltows how the( stead ' . spatiwise- periodic vortex pat tc(rut gels establ~ishied ats iev
loiunip is broiight to its final shape( over it per'iod of t iine. Againl. 0o(Ili a' ,o V' nte ilt(' iliontot lui('
behtaviomit' of tie( dIisp~lac'emetnt fuinct ion I( A. 7 0. '1') Ill t lie i'egioi (lowust i'(a In of t lie ItitIpIII
at ('a('I itnstanit of tilit(. III tlie icutt of thle liumip. aluain. tie( dIisp~la'ement(ut func'tion closely'
r('seIttlc~(s the ittstaiitaieouts htumtp shiape,' as Ii ill(,t case of Fig. ha. Fot' small A'. thIis lalt(te'



behlaviu' ir c-ati also be p~red(ictedl Kiniig I lie closed fomn solt iiion (2.A) above, whtich fii byhe shows
that for N << 1,. the wvall-shea i pertuiirbat ions P (O ) and 11"(0) are colisi derabl) : v isalleIr thani

tihtle lceiei tlitns perturbn at ion. beinig of O( A'!) andl 0(XN1 :~), respect ivel\'. relative

to . Fiir-thlerivioi e, thle xiscoi is layer begins to grow at thle uisualI rate of V - ' X0 niear A < < 1.

Iliis siiggcsting a INO ittir51it withIin the O'ver dieck correspoiidi ng to V A- VP aiid V =0(1 )

Thti wall-shear scalinigs for small X show bhat On li(low near tlie( front cnd of tlie( obstacle is
iiearlv in thli spaniiwis Ii rect ion: tioweveer cointrary to what oiie's i nt~iiition might suggest . this

flow is foiunmd to be coii'erg ig towards tlie, obstacle inst adt of spreatlinig out along tlie( spanxvuse

directiton. A phvsi al cx pta iat iou for thIiis observa ition is provided iii Sect iou :1.2 1bclow. The
iinist at le ( ort Ir vortex part of thle st ead v-st ae sot ll ou can he shuowxn to lbe

N; 3()01 = ' ~ 3 (_:-Ai'(0) )3/5. (1.2)

which is, sthowni via s vnitols iii Fig. (Ib1). It may bt seen t in.. the numerical soluition is ill

Ocxlicclle agr-ceuieiit wvithI thle iiistalbilit v- iode part of it for nearlyv all locations (lowinst ream of
tictiiiip Sinuce tic( algcor~-iical Iv decavinug part of the solt mtion appears to be dom inia te uSo

qu i ck ly liv tie imst ahl e ('igeui fi tuict ioul part,. thi s suggests t hat experimental measutrement sof
;5nu h 'r voirt i is n eed I mt ouulY tie carried oi it far downustreaim of tit(e region whecre tithe vort ices

arc iii'Iiicci I

l'iuiallv. let us" briefly conisidetr t1n tieiiviscid limlit corres'poiildiig to the( dislpersion relatioii

(.My) It'is eas ,v to show thIiat thte corresponding (Ii ferent ial equzat ion for, say. thte dIisplacemienit

fillict iou A1 ý ,_ivcl) lbY

i(_VY).y + A.2,1) ki -0. (3A1)

whlichi is hivperbotlic ill tic( X\ - T' space on t tie( basis oft tie( standard classification of 't'oiud

order partial differcit ial e'quationis. Thel( two families of characteristic curves corresponudinig to

t'qna t iiin (3.3) ar cgivl byi i

7'1 (0IU./(fl/ antI AX - 1kv!' coo.MI(I1,.(. .1,

resjct itti clY. I Ihi S si uggest s thIiat Itic M A Yuh prtdvlin should be posedl at sonic ini~iai a stat ion

X t and ift tie ( amucti'v dat a has a hidnt'ioiizero imnit as T -* _) . toit l( l tid btaimus titic iiist able

't( titIc vo-n rtyxx' iiig ;ii thle doxvnstivaun ttirection ats part of Itie( causal steatty soluition. Ill

con t rast,. if ()it( t ractes thle t rajectories of bo0th roots of thte dIispersioni relation ( 2.8a ) iii titie

comiiple'x . lleas (T mloves frn oiieifliyt eoaltong the( real axis ( Fig. .5). thlen

appllica titon t)f tlit(' IBri!'ggs- 13trsci criterion xwould i inply that thle root corres)ouidiifig to tie iiist ablet

%mt incxt iglit t o appear oii thtce upst rvaii sidIe. ITie reason behind this faililre appears to he

linikedt to tlit', iiifiuiit-spet'd cliarat'ri'I ici (01..a). xvhich leads to a stolitioii that tlots tot tlecav

raidyelighil ,aiivn iiistaiit o'tmthe ' )xvialoiing tlie( usage of lie- imagiiiary .3

a xis ats thtc in x'(rsioii contlou r for a twxo-sidtet Laplace t ranusform in X eveni for snia II vatlnts of 7'.

Sin uuth I tc lrggs- t1es critutrkiti is b~asted oii thlt'assuminimtio of a spat ially coiiipacl tlsuibauuce at

silliil i'iioiighi tiiittes. it st't'iis rt'astoiiable to) expect that t hat it may i ot provide reliable rtesiilts

in t his particuilar case. This peculiar beliaxiourl of t linsailt i quitst ioni is also) reflt'ctedo
iii thte dispersion rtelat ion (2.Sa). wvhich predicts puire'ly disptersivte biehiaxitoir for real st reauixise

\xav'iiuiitic's it' tuitral titliavitiiriii thlt's('ist'of a t('iiptral instability). bit predicts unstable

roots foir real frtquouutit'cis (i.t'. spat ial instabilit ). in pariticuar. I lie sltatiiiuarv (Artit' vortex at

0.



3.2 Unsteady and Steady Disturbance Patterns due to Localized
Surface Irregularities

Ili view of the order of magnitude increase in the computational effort required for this case.
only one specific situation, corresponding to

F(X. Z, T) = (I - cos(2irX)) (1 - co.s(DrT)) c- '2 /9 H(X, 0, 1) H(T, 0, 0.5), (3.5)

was considered for the purpose of numerically calculating the disturbance pattern due to an
unsteady, localized wall hump. Here, the Gaussian drop-off in the spanwise spect rum was chosen
in order to offset the ill-posedness of the steadV dispersion relationship (2.91)). Tie contoours of
constant (instantaneous) displacement in the X - Z plane for this case have been shown for a few
selected values of time in Figs. (6a-e). Dlue to the spanwise symmetry of the surface ol)stacle.
only positive values of the spanwise coordinat,. Z have been included in the plot. Results for
negative values of Z can be ol)tained through a reflection of the contour about the horizontal
(X) axis. Figures 6a-e clearly indicate that a vortex p)attern is established downstream of the
source, and that as tiue passes, this pattern is convected downstream, also gaining in amplitude
at the same time. This further demonstrates the convective nature of G6rtler instability in the
case of disturblances with a. continuous spectrum of spanwise wavenumbers. Thus, it. would be
possible to study the dist urbances produced by a steady wall hump by a direct solution of the
steady form of the governing equations.

For the purpose of the steady calculation, we considered the hump shape given by

F(X, Z) ( - co.;(2wX)) €-Z2
19 [,(K 0, 1). (3.6)

The constant ldisplacement contoirs correspondling to the disturbance pattern produced by this
hump are shown in Fig. 7a. One may observe that, the confocal ellipses near the inflow boun(larv
conform rather closel v with the ol)stacle shape, similar to that in the spanwise-periodic case
disclisse(d in Section 3.1 above. Thlis, over a major part of the hump, the boindary laver is
simply lifted up by the amount. of the local obstacle height, although in the downward sloping

portion of the hl imp, thhere are regions of small negative displacement at sufficiently large values
of tle spanwise coordinate Z. Figure 7a also indicates the presence of a streamwise corridor just
downstrream of hle htumtp (corresponding to curve 6 closest, to the X-axis), which separates tlhe
region of large (ipositive) displacement from the rela.tively less disturbed region outside. This
feat ire was also noted by Smith 0i al (1977) in the solution to a. three-dimensional triple deck
prol)hem. The most striking feature inl Fig. 7a, however, is the gradual emergence of a vortex
structure downstream of t i te hump, which corresponds to alternating regions of positive and
niegativye displacement, separated by thle contours marked as "6 . At. each streamwise station,
the innermost vortex is the strongest one, with the amplitude falling off rather rapidly away
from the centreline, thus leading to a vortex pattern with a roughly paralbolic shape. The
orientations of the centrelines of different vortices, correspon(ding to zero displacement contours
(marked a~s "6" in the figure), indicate that all of flhe vortices are l)resent at locations jiist
downstrreanm of the hump; however, since their amplitudes are inversely proportional to the
distance away from the axis (Z = 0), the more distant vortices become noticeal)ly large only
at increasingly larger distances, thereby creating tle illision that additional vortices are being
created as one moves downstream. The qualitative resemsblance between the vortex patclh of
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Fig. (7a) aiid that tiiiptited ninnerically for the rase of(;= 0( 1) and Az 0( 1), D~enier. Hall
ai~d Sedldouguii (1990). where no asvninptot ic approxinmat ions were inivol ved, ind(1icates that the
pre~sence of sipanwise di ffusioii t erins in the governiiing eqilatioiis is not a prereqi iit e to obtain a
slowly spreadling pattern of st reaniwvise vortices.

The' contours of conlstant axial andI spaiwise shear st resses (niot shown here) also bear somle
sit i larit jes to the triipie (eck situiation, excepting t he lack of iipst ream i nfluienice. and the proesece
of thle G~;Itler vortex pat tern. H owever. an exailli nathmio of the seconda rv flow within tHie X - Z
plane reveals anl imiport ant, difference between t be distutrbance patterns inl these two) cases.
S pec-i tioal lv the results., of Sin it h 0 al (1977) show that. on thle forwvard face of the( humip. tilie
flu id is pushed out in tihe spaiiwise direct ion wit hini the lower deck. alt houghi it. converges again
towardls thle lst ache iniside the niniddlle (lck. thuits creating a reci rctiiat ilg secondary-flow pattern.

Tlr is pat ternis 1 reversed oni the backwardl face, of the hui ip. whereby the fluid is dIrawn toget her
iii thle lower (leck. but puishied out wit hin the( in iddle-deck. (oiit rarv to this, as well as to one's
mituiiiti yeex pect ationls, it is fouind that, in the case of aii oi5t acle over a concave surface, the fluid
mroves t owardls thle obstacle oni hothl the fowardl, as well as rear- faces of t he humip. T'his spanwise

c vegence of tilie fluid, w hi ch cont inutes across t he miniddle deck as well, is acconinpan ied by a ii
nipwel injg near the ax is ( Z =0). t hereby set t ing tipl aii out flux into tile upper deck. where- the(
lt Iidl is pusliedI oi t againi: see Fig. (71b). The couititerrot at ing v'orii ces generateol iin this mnanner-
I ecoii e (speciallyv promiinent fart her lowiist reami of the obstacle. and~ 0o1e obiserves the (list inict

patt eim of alternate regionis of iipwvel inig aiid (lowniwl intg. withI thle streingthI of this patt erii
deccreasinig (ý-iutc( rap~idly away fromi thle axis.

These di fference's bet ween the two problemis ('all he easily t racedl to the natutre of t he re-
sjpect i e relat ioiislIdps 1 tnieen the lpresstire auiio thle displacemeint-t hickness pertutrb~at ions. In
1 hI' case of ani obst acle xvilt i t ri ple-deck scal ings over a flat surface. thme (list rihbut ion of pressure
is conitrolled by t he st reaniNwise slope of thle (lisllacetllent. funt iou , whereas iin thle case of a
st reatiwvise eloiigat ed luiiinp over a concave wall. th le pressture is up ial to thle nlegativxe of the
Ii splac(eilieiit. as seen fromi the viscous Iillnitr of tIe inuteractive relat iomnsh ip (2.3f) . Therefore. tilie

decreasinig d ispaeilleunt away froiii thle ceiitreline in Fig. 7A translates into a nlegativye preossire
pertuiirbat ion of dlecreasing miagnit ude, away fromt the axis, Z =0. In othier words, tlie( displace-
nieiit pattern of Fig. A i ndtices a favorable pressiire gradient towa rds the centrel inie, whticli
Woiuld explla in thle sin k-like O'fect the obstacle has on thle flow withiii the boundary layer.

4 Conclusions

WAe have o iniixest iga ted lie inst eadyv spatial evolutition of loing wavelenigth Ii 1 ttler vortices tn ita

ho)u)nii a rv Ia *ver. 'I'lie viscous-i iivisci d initeractivye regimev we have conisidlered is appropriate( to
siltuiatioins whtch thle ( "6;rtler nuiiim er is Ia rge biut aiiv pertutrbat ions in the flowv have spaiiwise
wavelenigth hinitchi larger thiatt thle 1)01nidar 'v layer thliicknless. lii part icuhlr it follows t hat our

wr-is relevant to flows nerthe leadnhimg edge of highlly cuirved hotuiidariy layers of th lipeon

miiigltt finid for examiiple ohi a tutrbiiie blade.
We hiave shown t hiat ftle(, ort ler niecliatistm iii t Iiis regime is it cnivectivye rat her thiaii absolutt e

iist ab i lityv. Tl'his result conttradlicts5 previous work omi the ( ;OlA Icr lprollenl in t his p~art of thle
( ;;t '- a en1111 irspace. P~erhiaps Ileill( ja in con cluisioii to be d rawni frotii oilr work is that

iii general it is sit flicieiit to st ioly only tilie st eadyl ( ;rt her problem.ý H owever we miust bear in
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mind that our analysis is rest ricted to t he small wavenumber regime so that it is always possible
that absolute instabilities might occur at larger wavenmibers. The fact, that experimental
observations all indicate that, Gortler vortices are coiivect ively iistable, suggests that the latter
scenario is unlikely.
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Fig. 2 Spatial root of the steady dispersion relation (2.7b)
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Fig. 7b Sketch of the secondary-flow pattern due to a wall hump on a concave

surface
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